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ABSxHAUT 

Vnr- a  r-1 cH rl hnrl-u- mihlpnt to no moments the differential eauations 

for the angular velocity can be solved independently of the remaining 

equations of motion. The integral curves are intersections of the energy 

and angular momentum ellipsoids, which have common centers and principal 

axes. In general, there are four types of closed integral curves. It 

is well known that if the solid contains a cavity that is topologically 

equivalent to (i.e., continuously deformable into) the interior of a 

sphere and is completely filled with non-viscous incompressible fluid, 

the properties mentioned above remain valid. However, if the cavity is 

topologically equivalent to the interior of a torus, the fact that the 

fluid may have a non=vanishing circulation, r , on certain paths creates 

new possibilities. The angular velocity integral curves are still inter- 

sections of ellipsoids with parallel principal axes, but one of the centers 

has been displaced thrQiicrh a distance that defends on the 'oarameter V   = 

If f = 0 there are generally four types of closed integral curves; five 

for "weak" circulation; three for "intermediate" | f~ | ; and one for "strong" 

I f~!= The qualitative nature of the integral curves for solids with 



cavities of greater topological complexity has also been analyzed» The 

number of distinct types of behavior is surprisingly limited and is, in 

fact, still closely akin to that of bodies with toroidal cavities. 
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1.  INTRODUCTION 

To determine the motion of a liquid-filled solid is an important and 

difficult problem in dynamics. In actual applications the liquid is 

viscous and need not completely fill the cavity in which it is stored. 

However, when one attempts to attack this problem, a natural model with 

which to begin is that of a cavity completely filled with an incompressible, 

non-viscous liquid in irrotational motion. 

If the cavity is topologically spherical, (i.e., homeomorphic to the 

interior of a sphere), then in this model the liquid filling introduces no 

dynamic novelties. The differential equations of motion of the solid-liquid 

system can simply be considered to be those of a solid with a different 

mass and different inertial matrix. Among its other shortcomings there is 

no possibility for including in this unsteady irrotational flow a "spin" 

or general circulation, such as one would expect to obtain if, for example, 

the container itself is spinning. 

If the cavity is topologically equivalent to the interior of a torus, 

it becomes possible to have unsteady irrotational flow with circulation, 

r . Unfortunately T must be constant, a fact which seriously restricts 

prospective application of the following theory. Nevertheless it seems 

worthwhile to investigate the influence of circulation on the motion of the 

composite solid-liquid system.  For this purpose, the most natural and 

easiest problem to consider is the classical one of motion under no forces 

and moments. 

If we consider a system with no special symmetry, the results may be 
2 

summarized as follows. As will be shown later, the range of T   must be 
2     2 

divided into three intervals with end points 0,  f~  ,  f* , and co . For 

r = 0 we obtain the classical result that there are six possible steady 

states of rotation, four of them stable, the other two unstable.  Roughly 

speaking, there are four periodic types of angular motion, each centered 

about one of the stable steady states. For weak circulation, 
2       2 

0 < r   <  r? , there are still six steady states, four of them stable. 



Now, however, in addition to four previously mentioned types of periodic 

motion, each centered about one of the stable steady states, there is now 

a fifth type of periodic motion centered about two stable steady states. 
2    2     2 

For intermediate circulation, F „ < n < f~  , there are four steady 

states, three of them stable, and three types of periodic motion. Finally, 
2    2 

for strong circulation, r^ < r , there are two stable steady states, 

and one type of periodic motion. 

Certain types of degeneracy are associated with appearances of 

multiple characteristic roots of a matrix involved in the theory, or 

special orientations of an "axis" vector associated with the cavity. An 

important example of such degeneracy occurs for axisymmetric liquid-solid 

systems. 

If the cavity is of topological genus N, i.e. topologically equivalent 

to the interior of a sphere with N handles, the analysis of the possible 

motions can be performed by an extension of the methods developed for the 

discussion of toroidal cavities (N = l). With a cavity of genus N we 

associate N "axis" vectors, of which not more than three can be linearly 

independent, of course. This yields the conclusion that there are 

essentially four types of motion for bodies with liquid-filled cavities of 

genus N, depending on the number, between zero and three, of independent 

"axis" vectors. Two types correspond to topologically spherical or toroidal 

cavities (N = 0 or l). We conjecture, without proof, that the other two 

types correspond to cavities of genera N = 3 or k.    The measure of arbi- 

trariness available for the choice of circulations for cavities of genus 

N = k merely serves to provide a greater variety of assignments of 

circulation that will produce the same motions as a body with a cavity of 

genus N a 3. 



2. FLOWS WITH MOVING BOUNDARIES 

The most commonly discussed problem that Involves rigid bodies and 

a non-viscous incompressible fluid concerns the motion of a finite solid 
(2 *,) 

through an infinite region filled with fluidx ' '.    The method used for 

this classical problem requires only slight modification to adapt it to 

develop the equations of motion of a finite rigid body that contains a 

cavity completely filled with fluid. However, since our purpose in the 

following discussion is to emphasize the influence of circulation and 

since the derivation is comparatively short, for the sake of completeness 

and clarity we shall reproduce it here. 

First choose a moving system of rectangular coordinates relative to 

axes rigidly attached to the body and with origin at the center of mass 

of the combined mass of body and fluid. At any time t also choose coordi- 

nates (x,y,z) relative to a system of axes fixed in space that coincides 

with the instantaneous position of the moving axes. At this instant the 

position of any point in the body or the fluid can be specified by its 

coordinate vector x = (x,y,z). Also at time t let u(t) = (u , u , u ) 
■— ~~       x  ' y  z 

be the velocity of the moving origin, and let w(t) = (w , w , w ) be the 
—      x  y  z 

angular velocity of the moving system relative to the fixed axes. 

Wow suppose the body contains a cavity filled with incompressible 

nonviscous fluid of density p . Let V- be volume occupied by the cavity, 

and ST its boundary,,  If we assume that the motion of the liquid was 

started impulsively from rest, then by Kelvin's theorem it will be 

irrotational. Accordingly, the velocity of the liquid can be expressed 

as 

for some velocity-potential function $ such that 

V 2<3> = 0   ' in VT (2.2) 



and subject to the condition that on. ST the normal component of the 

velocity of the fluid relative to that of the boundary vanishes. Let 

XT be any point of S and n the corresponding unit normal directed into 

VT.  Then we must have 

ovj-7 cm  = n   "   v V VXJ t)     = n • 

Since n = n(x) at time t, tentatively choose 

/. \ n 
u^t; + w(t; xx   on S . (2.3) 

(J> (x, t)  = u(t) * £  (x) + w(t) • ff(x) (2.k) 

Then (2.2) and (2.3) will be satisfied if we choose ^ (x) and a  (x) to be 

single-valued solutions of 

V2 i    =    0, V2 £    =    0 in VL (2.5) 

o" <jk/on     =    n   •   V <£   =    n 

ri (T/ i\i    =    n   ■ V cr    =    xx n 

on Sv (2.6) 

If tL   is topologically equivalent to the interior of a sphere, then 

<P, j5, and a  must all be single-valued, and as solutions of Neumann problems 

they must be unique except for additive constants.  If, however, V is 

topologically equivalent to the interior of a torus, and if we overlook 

the question how one would create a general circulation in the cavity, 

and thus abandon the impulsive start from rest, then $ need no longer 

be single-valued.  This can be seen by considering the circulation 

r (C)  = f    UL (x, t) . dx = j  d $ (2.7) 

about any simply-closed path C in V . Now form i~ (C') for any other 
XJ 

simply closed path C' which can be continuously deformed into C without 

crossing S-.  If under this deformation the sense in which C is traversed 

in r(c) corresponds to xhe  sense of C in r (C), then by Stokes' theorem 

r (C) =  r(c); otherwise r (c) = - r (C).  If, in particular C can 

8 



be continuously deformed into a point within V,, then r (C) = 0. On 

the other hand, if C loops once, and C loops N times in the same sense 

about the hole of the torus, then r (C) = N r (C). Thus, for all 

single loops traversed in the same sense we get the same circulation 

r(C)  =   r  .     If r f  0, (2.7) implies that $ must be multiple-valued. 

Accordingly, let us modify (2A) to the form 

<t> (x, t) = u(t) • £(x) + w(t) . g(x) + r T(X)    (2.8) 

where in addition to (2.5) and (2.6) we require 

V 2T = 0    in V (2.9) 
Jj 

b-r/bn =  n • V T = 0        on ST (2.10) 

and though the components of V T are single-valued, T increases by unity 

when a closed loop about the hole of the torus is traversed once in an 

arbitrarily selected positive sense. By Bernoulli's theorem 

- p/pL = d*/at + 0.5 (V4>)
2 + gG(t) • x + P(t)  (2.11) 

where G(t) is a unit vector parallel to the gravitational field and P(t) ia 

some function of t. Since the pressure, p, must be single-valued in V, 
Li 

then d r /dt = 0, i.e. r must be a constant. 

Hereafter it will suffice to consider (2.8) without special reference 

to (2.k),  since results for topologically spherical cavities can be deduced 

by merely setting r * 0 in the following discussion. 

For general cavities VT of finite extent, which are not necessarily 

even topologically toroidal, 

i  (x) - x (2.12) 

satisfies (2.5) and (2.6). The discussion of a(x)  and T(X), however, 

cannot be continued without specializing VT. This will be done for 

axisymmetric cavities in Section 7« 



3. LINEAR AND ANGULAR MOkrajTA OF THE LIQUID 

To formulate the equations of motion of our composite solid-liquid 

syßtem we shall require the linear and angular momenta of the liquid. 

Let *T(t) be the linear momentum, and k an arbitrary constant vector. Then 

-L ' -    =/v Pl£ " ^*dV = Ji + J2 + J*       (5-1) 

where, in accordance with (2.8) and (2.12), the sealars J are defined 

below. First 

r 
Ji  =  Jy pT^ ' Ü dv = ML £ • u (3.2) 

Li 

where M^. is the total mass of the liquid. Next 

V^L = J V - ' 7 (- ' 2)  dV =/v V' (k • x) . V (w • a)  dV 
Xi Li 

By Green's theorem and (2.6) 

J„/pT    ■    -   / k • x    Ö (w •  cr)/on dS ^   L ^    SL -     - -     - 

=    -    /   _ (k • x)  (w x x • n) dS 
j   sL-     -     -     -     - 

= j V *    ! (k • x) w x x i     dV 

/\r    * x x •  k    dV 
*   'L 

Thus 

where x^  is the center of mass of the liquid. Finally 

V
P

L   
=      fv   rk.V Tdy   =   rf    V (> • x) • VVdV 

> *     L *    T ""      ~" 

" rJ S      (k • x)    ät/än dS 

L 

10 



whence by (2.10) 

J3 = 0 (3.U) 

Since k was arbitrary, these results imply 

t w   / \ f-z     K\ 

Next, let ^-.(t) be the angular momentum of the liquid. Then 
i_i 

r.   =       f D x x ^7d> flV  =  .T. + .T  + .T 
-^L    J   VT 

MI^         ^ ' -5 ' ^6 
r^.^ 

for the following choices of vectors J. First 

^=/vpl£X^dV = MÄX^ C3.7) 
L 

Next, by Green's theorem and (2.6) 

J£./pT  = f  x x V (w • a)  dV = - /   V x f(w • or) x] 

= - L (w • cr) x x n dS = - f  (w • er) öa/on 
jbT   -    -   -     - j aT -  -  - 

dV 

dS 

= f„* V (w ' £) ' V a dV (3.8) 

Finally 

J  VL 

J^/PT 
r = / v x x V * *V = -/vVx (TX) dV 

~" "    * "L * 'L 

By means of some surface 3* bounded by a closed curve C* on 8T change VT 

into a topologically spherical region in which T is single valued. Let 

n. and T. denote the inward unit normal and value of T on the "initial" 

side of S*,  and let n„ = -  n and T = T + 1 be the corresponding functions 

at the same points on the opposite or "final"side of S*. Then 

J^/pL r ■ J*/pL = - fs    (x x n) T dS + f   s^(x x n1) dS 

'      (3.9) 

11 



Later, in order to simplify the equations of motion, we shall make 

transformations of coordinates that can be most easily motivated bv 

exploiting the relation between I  ,   u,   and the kinetic energy T of 

the liquid'^'■" .    We have 

2TL    =   / V PL ( V$ )2 dV    =    J7 + J8 + J9 (5-10) 

where 

J7    =  fv PL ^- + V  - ' 2)2 dv (5-I:L) 

Jo    =    2 /"„ pT   r(u + Uu •  a)  ■ V T dV 
./ vL i. 

_ 2 r        / r7_x2   ,„ _  2   _ * ..      .. d
9    =   r   j VT   ^ VTj    av    =   r      J? (3.12) 

By Green's theorem 

Jo    =   2p    r /   v   V (u • x + w •  a)  • V T dV 
**      "    'L ~     "     " 

-   c|j      i      i \u   •   jt  + _w   •   a;     oi/O11 iö 

/ ^   .. «\ wnence oy (^.±u; 

Now observe that 

dT_/du     =        J .. o- V <J>   dV    =     6 f5.l!^.,! 1/   - J VL' L -   -      ■ _:L 

A 1 RO 

V^«-^-r/ 

V        / ▼ 
öTT/ov    =   /   „ p, V$  -V    a dV    =      T .    D_   fu +U w  •   n + rUrl   • T7 n riv 

u    - j    vL u -     - J   VL L    -      *   -      - "    '        "     

If in Jo we  set u = 0 we obtain for any w 

J    PT   rVx • V a   dv   =   o 
- -L - 

12 



Thus by Green's theorem and (2.6) 

(dTT/a»)/pT = /vV(u-x + w-£)-Va dV 

= - ; 0 (u • x + w ■ ff) x x n ds J   sL   -     -     -  

„ V x (u • x + w • a)  x I dV j    vL    L ----- J 

= f      x x V ( * - r T) dV 
*  L 

Hence 

T^ = ar/cw + r J* (3.15) 

where we shall call J* the axis-vector associated with T. 

It will prove convenient to write TT in matrix notation. First 

observe that 

J7 = Mj, H + 2 / v PL U " ^ - ' - dV + J V PL ^ - ' -)~ 

Thus, if we interpret u and w as column vectors, then 

2TL = MjU
T Iu + 2uTBL w + w

TCL w + J * l~2 (3-l6) 

where I is the 3x3 identity matrix, BT and C are matrices with constant 

elements, and 

T 

where the superscript T denotes "transpose", and J * is a constant. Since, 

by repeatedly used manipulations 

dV 

15 



u BT w/pT     =   / ,r    u  •   V w  •   a    dV    =    -  /  ST   (u  •  x)  d (v  ■   a)/bn dS 

"   /        (u  •  x) w  • x x n 
L 

w   •    / U    x   fu   •   x^  x 
"     J     VL  ' ~      -' " 

f       (v  • u x x) dV 
"   'L 

dS 

dV 

M L7       •       11      V      V 

1U 



k.     LINEAR AND ANGULAR MOMENTA OF THE SOLID 

Let V be the volume occupied by a solid of mass H^,  density p , 

and with center of mass at x„. Then the linear momentum of the solid is 
—Ö 

-s = Jv   ps (- + - x -^ dv = Ms (- + - x ^     ^•1) 

and its angular momentum is 

-10   ' 'S 
[ ..    Pa  x x (u + w x x) dV 

r        r 2     .      ,    i ... (*-2> = M
s 2Es 

x Ü + J v ps 1 - - " l- ' -; - J dv 

Its kinetic energy T_ can be calculated from 

2TS    =    / „    P„ (u + w x x)    dV 

Clearly 

=   J v    Ps (u + w x x)' 

=    M_u    + 2M„u  •  w x x„ +   / „    pn    x w    -  (x  • w)c I dV    (If.3) 

i„  =  ar„/öu (it. 4) 

tjg    =    ÖTs/äw (lf.5) 

In matrix notation T takes the form 
S 

^ff  =  MR "±     Xl +  2H"Bfl * + ^°R  I (^-6) 

where B_ and C are constant matrices, and 
s   s 

C T = C_ (lf.7) 

uTBg w = Ms u • w x Xg  . (1^.8) 

15 



5.  EQUATIONS OF MOTION 

For the composite liquid-solid system the total kinetic energy 

T = 0.5 MuT Iu + u^ w + 0.5 wXC w +* r   J^        (5.1) 

where M = M-. + M is the total mass, B = BT + Ba,  and C = CT + C_ are 

constant vectors, and 

CT = C (5.2) 

Since T must be a positive definite quadratic form in r  and the components 

of u and w, then as a matter of fact C must also be positive definite 

(3.18) and (1^.8) imply 

T r  ■ i u Bw = u-wx^ M^ + M^ j (5.3) 

Hereafter we shall assume that the origin is at the center of mass of the 

composite system. Thus M,.xT + M^,, = 0, which implies 

B = 0 (5A) 

The linear and angular momenta are i_  = _| + i      and T^ = r^  + rj_. In 

accordance with the results of the preceding sections 

1 = är/äu = Mu (5.5) 

jH = öT/öW + r J* = cw + rj* (5.6) 

If F and L are the resultants of the external forces and moments acting on 

the composite system, then the equations of motion become 

M(u' + w x u) = F (5-7) 

C w' + w x (C w + r J*) = L (5.8) 

where ' denotes d/dt. Note that C is entirely determined by the geometry of 

the system and its mass distribution. The circulation of the fluid manifests 

itself only in the term rj* of (5.8). 

16 



6. MOTION SUBJECT TO NO EXTERNAL TORQUE 

The motion of a rigid body in the absence of external torques is a 

standard topic for mechanics textbooks  . Accordingly, the case L = 0, 

which occurs for example for motion in a uniform gravitational field, 

should be ideally suited to bring out very clearly the novelties introduced 

by the inclusion of circulation. 

For L = 0 (5.8) becomes 

C w' + w x (C w + r £*) = 0 (6.1) 

Accordingly it is possible to determine the angular velocity w(t) indepen- 

dently of u(t). This system has two well-known integrals 

w~C w = 2T* (D-2) 

and 

(c w + r J*)T (c w + r £*) = K (6.3) 

where the constant T* is that part of the kinetic energy associated with 

w, and the constant K is the square of the magnitude of the angular 

momentum vector. If the rectangular components of w are interpreted as 

rectangular coordinates^ (6.2) is an ellipsoid with center at w = 0, and 

(6.3) is an ellipsoid with center at w = - r C" £* which is in general 

different from w = 0. Thus the integral curves of (6.1) are intersections 

of ellipsoids, but by contrast with the more familiar case r = 0, the 

centers of the ellipsoids no longer coincide. 

It should be remarked that under the transformation w(t) = Til ( rt) 
/ £     1 \  JL-.1 _  4-*UA  p  L. \ D . -L / OO.A.C ü one x <JX lu 

cdw/a rt + a x (en + J*) = o 

Thus, if the structure of the solutions of (6.1) has been determined for 

one value of l~/ 0, then it is known for all r f  0. We shall not exploit 

this fact, however, in the sequel. 

17 



Hereafter, let us suppose that T* has been prescribed.  To gain a 

comprehensive view of the behavior of the associated one-parameter family 

of integral curves for given r, let us consider the level curves of the 

function K(w), defined by the left member of (6.3), on the energy ellipsoid 

(6.2).  Let us begin by determining the critical points on (6.2) for which 

K(w) is stationary.  Proceed by Lagrange's method of undetermined multipliers. 

Let 

F(W, X) = (c w + rj*)T (cw + rj*) - x(wTcw - 2T*) 

Then at the desired critical points 

SF/OW    =    2CT (Cw + rj»)  -2XCw    =    0 
m 

and dF/dX = 0, which merely reasserts (6.2). Now by (5.2) C = C.  Since, 

furthermore, C is non-singular, then dF/äw = 0 Implies 

(C - X I) w = - rj* (6.k) 

If X is not a characteristic root of C, then the critical points of K(w) 

are defined by 

w^ = - (C - X  I)"1 r J* (6.5) 

as functions of X.     Of course these are merely the singular points of the 

system (6.1). Then (6.2) and (6.5) imply 

j*T (c - x i)"1 c(c - x i)"1 J* = 2T*/r 2        (6.6) 

from which X must be determined.  In accordance with (5-1) T*/ r  is 

proportional to the ratio of the kinetic energy due to w to that due to r 

To simplify our discussion, let us assume that the x' coordinate 

axes have been chosen to be parallel to the principal axes of C. Then 

/ D   0 

C  =  f  0   E 

\ 0   0 

and, in general, we may assume 

0 < D < E < F (6.7) 

18 



If we also assume J* = '(j, k, Z),  then (6.5) and (6.6)  take the special 

forms 

and 

v  = (J/X-D,  k/x-E,  i/x-F) (6.8) 
—c 

Dj2(X-D)"2 + Ek2 (X-E)"2 + F/ (X-F)"2 - 2T*/ T 2     (6-9) 

p 
If in (6.9)  we consider T*/ r  to be a function of X, then since 
P     _p   p ^.p 

d (T* r~ )/dX >0 always, d(T* l~ " )/dX always increases. Accordingly 
_2 

the graph of T* f~   has the qualitative form shown in Figure 1, with the 
_2 

horizontal asymptote T* l~   =0 and three vertical asymptotes X = D, E, 
-2 -2 -2 

or F. Let T* l~    and T* l~    be relative minima of T* r  , and assume 
-2       -2 

T* r   < T* l~ Q , though the sense of this inequality is not essential 

in the sequel. Then, depending on the size of T* r  , (6.9) will have 

from two to six real roots. From Figure 1 it is apparent that the smallest 

real root will always be less than D, and the largest always exceeds F. 
2 

In the limiting case r      =  0, we obtain three double roots X = D, E, and 

F, which by (6.4) correspond to the ends of the principal axes of the 

energy ellipsoid (6.2), as indicated in Figure 1. 

The general nature of the stationary values K(w ) can be determined 

as follows.  Let N , N , and N , respectively be the number of relative 
M  m      s 

maxima, relative minima, and saddle points of K on (6.2).  If these 
(h) 

numbers are finite, the Morse theory of critical points   asserts 

(6.10) 

If we disregard occurrences of double roots X, which will be taken into 

account later, (6.10) yields the possibilities tabulated hereafter: 

N      ^    1 m NM 
£    1 

N    - N      ^    1, m         s NM -N      * s 

N    + N„ - N 
m        M         s 

2 
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u i. 

k 3 2 

2 1 0 

I     II    III 
r\ f J-J T • I  f 
UI'l U_HJiAJL   puiuub 

M   m 
N 
s 

When there are only two critical points, of course N = Nw = 1. m   M 

In the classical cases of rigid body motion or of motion of liquid 
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minor axis of the energy ellipsoid, two minima at the ends of the major 

axis, and two saddle-points at the ends of the mean axis. K has the 
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s s 
the surface of the energy ellipsoid into four parts, each of which 

contains a family of closed integral (or level) curves surrounding one 

of the maxima or minima. Figure 2a is a schematic representation of the 

system of integral curves on a cut and flattened ellipsoid. 

As r varies continuouslv the locations of the critical uoints will 
If    rs\ <     r- 2  _ 2 vary com,inuousiy on xo.^; as xong as u = i    ' p •  continuous depen- 

dence on r will assure that maxima of K move into maxima, minima into 
2 

minima, and saddle-points into saddle-points.  For small r  > 0, however. 
4-"U~      *f«"lnÄ«       ~4>      V     n4-       4-V.^       4-tin       nnAAlr*      -rml-^4-n      muni       ,34-P4>~-« m~       roV.*-...      4-1^4« 
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observe that by (6.3) and (6.4) we have 

Q O 
K = x"w"  = K* —c 

at critical points, and then by (6.8) and (6.9) 

K*(X) = x2 [*2L +■ (l - J) -Ar - (I - 1) -A* 1 

Then 

2 2 
*2L = 2X| J^ - (1 - | ) Ü, + (| - 1) -£*1   (6.11) 
dX LEr' E  (X-D)^   E    (X-F)3J 
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_ 2 ^    , _ 2  _ 2. 
Let 2e = min (E-D, F-E). Then for some re  5 min ( r , r  ) we 

shall have X^dK^/dX > 0 for all T ^< T e   and |\-E | ^ e. Furthermore, 
2  <     2 

-°  _ 2 .  _ 2   _.    .._. ,_  .  _      
roots in jX-E|<e for r  < r    bince aK*/dX >   u on the interval 

joining these roots, this implies that for 0 < r < r   the values 

^■P   V*      Qflv   K"     «n^   K   -    «>*^   rHfMV-rpnt. _ 

Now the level curves K = K, and K = IC-, / K_ must continue to 
X C X 

resemble lemniscates, with double points at the saddle points.  Since 
_2 

they cannot intersect, the situation for small r  must resemble that 

shown in Figure 2b. The, four families of integral curves surrounding a 

maximum or minimum within one of the lobes of K = K, or L are obviously 

counterparts of families encountered for i~ = 0.  The novelty introduced 

for small r ^ > 0 is the occurrence of a fifth set of closed integral 

curves, typified by the dashed curve between the level curves K = K, 

ana  tt.  =  JX-j.      HXxnoUgn   uu_r  jJrouj.    bij.u.0  JL   f  iv,   is   vaxxu   uux,y   i.ur   SUXJ. xcxenoxy 

small values of C~,   it seems plausible that the result is true for 
2     2 0 < r^< r2 . 

2    2 
As suggested by Figure 1, when r   = f~ p  one of the maxima (for 

the conditions depicted in our graph) should coalesce with the saddle- 
'   2 2 2 

point Sp. For r~ p < T  < tT~, , there remain two minima, one maximum, 

and one saddle-point. Now there will be three types of closed integral 

curves. When r *" = P n  one of the minima will coalesce with the 
2    2 

remaining saddle-point. Finally, for 1 . < r ,  there remain one 

maximum and one minimum.  Now there is only one set of closed integral 

curves.  From Figure 1 it is clear that  | X|  and |T|  tend to infinity 

together.  Since for large |X| we can expand 

fn   _ 1 T\~
X

     -  _ -v"1 (T  x Y.   1  nn \~n\ 
i v — /v J* /       —   —    /y* \ -1-  <  — -*-   \^   »v   ^ 

then by (6.6) 

.T*
T
 r T + V rA.-111 n r T + V c\~n 1  .T = 2-m2/ r 2 
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lim (   r/xf    =    2T*/J*TCJ* 
iri= oo 

Then by  (6.5) 

lim v    = +  (2T*/J*T0J*)°'5J* 
i n = oo ~° 

i.e., the critical points for jri = oo are at the ends of the diameter of 

the energy ellipsoid parallel to J*. 

In the classical case, r = 0, the components of w can be expressed 

in terms of elliptic functions. For l~/ 0 and D, E, F all distinct this 

no longer appears to be the case. For- let us attempt to express w and 

w as functions of w on an integral curve. When we eliminate w . for 
Z X Z 

example from (6.2) and (6.3), we shall obtain, in general an equation 

involving a polynomial of fourth degree in w , in which all powers of 

w between zero and four can actually occur. Thus w becomes a complicated 

algebraic function of w , and so, presumably, does w .  Thus integration 

of the equation of motion that involves w will presumably lead to some- 
x v 

thing more complicated than, elliptic functions» However, Dr. C. Masaitis 

has obsei'ved that if J* is parallel to a principal axis of C then w is 

expressible in terms of elliptic functions. 

22 



n 
I • 

Axisymmetric Systems 

In Section 6 we assumed that all characteristic roots of the matrix 

C we^e distinct and that J~* was Parallel to nnns ^^  +*v>o n^^pinQi nv-^o 
2— 2   2 

of C.  If D / E = F and j (k + i  ) ^ 0, for example, then (6-9) takes 

the degenerate form 

%L—0 + 
E^2 t *2)   =2?*/r2 (7.1) 

{A.-LI} K^-Z') 

We obtain a similar enuation for the determination of X  if we assume 

that D, E, F are distinct, but exactly one of the components of J* 

vanishes.  Now for small j T| the analysis starts with four critical 

points, one of which must be a saddle-point. With increasing J r j 

we pass finally to two critical points, just as in the more general 

circumstances considered in Section 6. 

x±    u   =   JCj   =   T ,     uiicu   ^u.uy    ucgciicraoco    uu 

DJ* /(X-D) = 2T*/ r (7.2) 

We obtain a similar equation, regardless of the nature of the 

characteristic roots of C, if only one component of J* is non-zero, 

or if E = F and j = 0.  A complete enumeration of the possibilities 

has no especial interest, and in any event, all types that can arise 

have been mentioned already.  Now there are always only two critical 

points. 

To turn to the most important of these degenerate cases, suppose 

our liquid-solid system is axisymmetric, with respect to the x-axis. 

Much more can now be said about form of the velocity potential.  Let 

U.iD      -JLJLi. UX UaU<_ C      <« jf J.X11U1 J.V-CA-L.     ^wxua       uuviu.xuu.L.i-u 

iö 
x=x,       y+iz=re 

T-P   yo    1 i=>+   n       )-!<=■   -(-.VIA   -nnrHAl     craimntipnt.   of   the   lffUpQT*d   TlT*1!al   tO   S ttpn 
r    ~~     """ -— r " "' ~"      —-- "        £/ 

A n 
n    + in    = n e 



Since now (xxn) = 0, we observe that 

ax = 0 (To) 

satisfies the relevant parts of equations (2,5) and (2,6), Since 

(xxn)  - i(x x n)  = (n x - n r) e 
—  — z    —  — y    r    x 

o_(x) - io (x) = t(x,r) ei9 (7.4) 
ü -      y - 

will satisfy (2.^1 and (2.6} if 

£| + £| +i a* _i2 = 0        inS* (7i5) 
äx är r    ör r 

~x -, "r ^ "r"      ~x" " ~L ox or 
\ 1 * ^ / 

where S* is a cross section of VT in any plane 9 = constant, and C* is 

its boundary  Obviously 

T(X) = 0/2n (7.7) 

satisfies (2.9) and (2.1ÖJ and increases by unity for each positively- 

directed circuit of a circle x = x . r = r . 
o      o 

To write the equations of motion we would require 

2T* = wTCL w = f pL ( V w .a)2  dV 

By (7-3) and (7-4) this becomes 

2T* = jtpT (w2 + w?) f fa*   [ *! + +? + /r "2 •r drdx       (7-8) 

By means of (7-5) and \~.6),   and Gauss' theorem this can also be 

written in the more convenient form for calculation 

2T* = - *pT(w" + w
c) / „ rt (n x - n r) ds (7-9) KLV y   z' J    C*     r    x ' u '' 
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where s is arc-length along C*. Clearly the matrix C is proportional 
It XJ 

to 

0   0   0 
/ \ 

I    0       x   o) 
V 0   0   1 ' 

We also need J*.  Since for (7.7) 

-2it (x x VT) = (-1, x cos 0/r, x sin ö/r) 

then j* = - f  p x x Vt dV yields 
—     J    V  L — 

- J* = (pL fj   s* r drdx, 0, 0) (7-10) 

It should also be remarked that the transverse moments of inertia of 

the solid E = *',  i.e. 

cs = 

DO   0 
/ N 

[    °  Es  ° j 
x  0   0   E ' 

ID 

Thus C = C + C will also be diagonal, and the last two diagonal 
O      J-i 

elements will be equal. 

Now (6.2) and (6.3) become 

D w2 + E (w 2+ w 2) = 2T* (7-11) 
x      y   z - 

(D wv + r j)
2 + E2(w 2 + w 2) = K (7.12) 

A J*        Z, 

where j is the x-component of J* in (7-8). The intersections of these 

ellipsoids of revolutions are circles 

w = constant 
x 

2    2   ,_„   „  2x/„_„2 
y     z X " 

PS 



Thus the solutions of the equations of motion (6.1) become 

(7.13) 
w 

X 
ss cons ;tant 

w 
y 

ivy 
Z 

_ 0    iv —   Ac 
<t- •v 

where the rate of precession 

v = ( 1 - D/E)WX - r j/E (7.1U) 

For practical purposes one would certainly be primarily interested 

in axisymmetric systems.  However, it should be remarked that small 

errors will occur in machining models intended to be axisymmetric.  If 

many models are to be constructed, one may also deliberately abandon 

nearly perfect dynamic axisymmetry because the effort to achieve it 

does not result in sufficient improvement in the performance of the model. 

Therefore the more general analysis of Section 6 may also have some 

bearing on practical applications. For systems that are not quite 

axisymmetric one would expect the full sequence of possibilities 

depicted in Figure 2 to occur.  In Figures 2a and 2b, however, the 

areas occupied by closed integral curves surrounding M and m would 

presumably cover most of the surface of the energy ellipsoid, and the 

remaining sets of integral curves should be cramped into a relatively 

small fraction of the surface area. 
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8.  TOPOLOGIUALLY COMPLICATED CAVITIES 

Let us motivate the following discussion by beginning with a 

special configuration.  Consider a solid with a toroidal cavity V 
L 

bounded by the concentric cylinders r = r, + r and the parallel 

planes x = + x, . To modify the motion of the solid-liquid system let 

us insert partitions on the planes 0 = 2nm/n, 1 m m s n. This will 

merely subdivide the cavity into n topologically spherical regions, 

which creates no dynamical novelty. Suppose, however, that all of the 

partitions are perforated.  If each partition contains exactly one hole, 

VT will be topologically toroidal (i.e. homeomorphic to the interior of 

a torus). But if we suppose that some of the partitions contain more than 

one hole the topological structure of V- will become more complicated 

than the interior of a torus.  Since the following discussion will not 

be concerned with the exact number of perforations,  we shall emphasize 

its generality by suggesting that the partitions could even be 

imagined to be made of finely woven wire mesh, to impart an extremely 

complicated topological structure to V . 
Li 

Now let us indicate how the treatment of the toroidal cavity can be 

adapted to the case of a very general cavity VT, not necessarily 

constructed by the process described in the preceding paragraph.  In our 

earlier discussion, the topological nature of VT asserted itself 

through applications of Gauss' theorem to various volume integrals 

taken over VT.  Let us suppose that V is bounded by a two-sided surface 

of genus N. In other words, V can be considered to be topologically 
It 

equivalent to the interior of a sphere with N handles. Then, by the 

insertion of N partitions S* we can make VT into a topological sphere 

V'. With each partition S* we associate a velocity potential function 

T.(X) which produces unit circulation on a closed path in V' from the 
j — L 
(arbitrarily chosen) initial side to the final side of S*. In fact, 

J 
T. will be single-valued in the cavity of genus N-l produced by 
J 
inserting only the partition S* but none of the others. Now replace 

j 
/o ö\ v.. fol 

* (x,t) = x . u(t) + w(t) .o (x) +   V r T (x)     (8.1) 
J J 
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where r . is a constant circulation associated with T ..  The boundary 
J J 

condition« for a  (x) are as before, while, analogously to (2.10) 

c>r7dn = 0       onS, (8,2) 
J ^ 

The kinetic energy of the solid-liquid system becomes 

2T = MU" 
+
WCW + £A     r    r. (8.3) 

where 

A      =  f      pT VT.     . VT, dV (8A) 
- L       - - o 

is a constant positive-definite matrix. As before, the linear 

momentum is 

£ - UJ-/UU.   =    M u (O.)] 

and the angular momentum 

a = ÖT/Öw +  £ 
rd*< (8-6) 

where the axis vector 

it = /v pT * x VT, dV (8.7) 
•  L ~' 

i (-.    PI   vnn-i n + Prl    "With   T 
j' 

For motion subject to no external moment we again obtain the 

energy integral 

T • - -. 
w uw = ^T7*- (8.8) 

and the angular momentum integral 

(cw + y   r 4 J*f  = K (8.Q) 
—        ~   J -J '  " 

The  search for the critical points,  w  ,  of the function K on the energy 
piHncMri   (R  R)   leariq   to 

Cw   +   V r .J* = A.w (8.10) 



or 

wc = - (c - XI)-1 £rj;J* (8.11) 

When we substitute (8,11) into (8,8) we obtain as an analog of (6.6) 

Ir.£fp(x) Er^.a. (8l2) 

where 

P(jt) = (C - XI)-1 C(C - XI)"1 (8.15) 

The analysis of the nature of the integral curves as a function of 

the N parameters  P can be carried out along the following lines. 

Suppose that n( s N) of the vectors J* are linearly independent, where 

1 = n = 5. Let K , fur 1 = u =■ n, be an ortnonorinal basis for the set 
-a' 

J*.  Then we must have 

H^ = 1,   H„. HQ = 0,   a +  ß (8.11t-) 
—a —a   "i_> 

Also, there must exist an N x n matrix G, of constant elements, and of 
' ja 

rank n, such that 

r^ n _ / Q  lr\ J* =  > , Ü. H IÜ.15; 
-j  ** 1 ja-a 

Now 

N n      N 
V   _ ...  V   , V _ „ N „ 

l   j-j    l    K       l   j Ja' -a 

Let W be any n-dimensional unit vector, i.e. 
a 

Tnw2„=i (8.16) 

There is, of course, an n-1 parameter family of W .  Then for any V 

the system of linear equations 

r G, = r w 
j ja    a 

(8.17) 
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has an (N-n)-parameter family of solutions  r  .  The general solution 

of (6.I7) is of the form 

N-n 
ri = r (rin + E  ^ 7 ,J   if r i 0 

O J- -I       c     iJt 

(8.18) 
N-n 

r, = 7   A 7 .     if r = 0 
j   ^ ± €  Je 

where 7 .  is a particular solution of 
jo 

T y *  G,   = w *-  jo ja  a 

and if N > n, then 7.     are N-n linearly independent solutions of the 

associated homogeneous equations, and A are N-n arbitrary constants. 

Now 

N 

X  r .j* = r I" w H (8.19) 
l   j~j      l a -a v   ' 

and (8.12) takes the form 

n    T       n / 
7 " W H P(X)    T     W H = 2T*/ r 2   if r r  °       (8.20) — 1a-a,"*-'1a-a    ' ' 

which is now more closely analogous to (6.6).     The kinetic energy due to 

circulation is 

°-5  £A      r     r    =   f r  2 c2   if  r/o /Poi, 
I      d if   r = 0 

wnere 

O N-n N 
c^ = 0.5   T A, .   (7,     +   7       A     z,   )   (7.     +   5* A„  y.„) y   ^    ij  wio       ^      e    i€

;      jo      ^ ±        y    jy 

,2       « K   V  A        r N-n  A vN-n  A 
(8'22) 

d   =0.5 I A.,   Zi     \?u   l±     VjO 

2 2 
Thus T*/ r  c would be the ratio of kinetic energy due to w to that due 

2     2 
to circulation when f~ / 0.  Note that if N > n, then c and d may vary 

with the choice of A . 
6 



2 
If we make particular choices of W and c , then in general we have 

exactly the relation between T and the integral curves on the energy 

ellipsoid that is described in Section 6.  If N-n = 2, (8.22) has an 

(N-n-l) - parameter family of solutions A . This simply means that the 

same set of motions of the system can be realized with an (N-n-l) - 

parameter set of choices of the circulations l~ . 
J 

Since equation (8.20) is the crucial element in the discussion of 

possible motions of the solid-liquid system, then the categorization of 

motions should clearly be based on whether T= 0 or (~ ^ 0, and then, in 

the latter case, on the number of parameters, n-1, required to determine 

W . Thus there will be four major types of motion. The distinctions a 
between them could conceivably be visualized and clarified by describing 

some of their properties, such as (l) the locus of the centers 

of the angular momentum ellipsoids (8.9) as a function of T and W ; 

(2) the possible steady states of rotation for fixed r and (if possible) 

variable W ; and (3) the limiting steady states for | V   J =00. 

CASE I.  If r = 0, then by (8.23) the center of the angular momentum 

ellipsoid is at the origin.  If N > n there may actually be circuits with 

circulation l~  / 0, in accordance with the second part of (8.18).  By (8.19) 

for I-=0 and (8.10) X  must be a characteristic root of C, and w a 

characteristic vector.  This leads to the familiar rigid body and spherical 

cavity type of motion. 

CASE II.  If l~~^0 and n = 1, the results of Section 6 are applicable word 

for word.  By (8.23) the centers of the momentum ellipsoids are on a 

straight line through the origin parallel to C H . For fixed P there 

are from two to six possible steady states of rotation, depending on the 

magnitude of T . For J I J =00 there are two steady states of rotation 

at the ends of the diameter of the energy ellipsoid parallel to the vector 

C H  .  Such motions occur, in particular, for toroidal cavities. 
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CASE III.  If r ^ 0 and n = 2, by (8.23) the centers of the angular 

Momentum ellipsoids are on a "lane through the origin. Let us set 

W    = cos 9, W„ = sin 0. For fixed V"  and 0 there are from two to six 

steady states of rotation, depending on the value of l~ . If 9 varies 

while F remains fixed the critical points 

W = _ r [ C - \(Q,  r ) i] -1 (cos 9 H^ + sin 9 H2) 

will trace a set of curves on the energy ellipsoid. In accordance 

with the results obtained at the end of Section 6, for I r I = oo and 

fixed 9 the two corresponding steady states of rotation will be at the 

ends of the diameter parallel to > W H = cos 9 Hn + sin 9 L,  In other **   Or-a. —1       -2 
words, for j f~ j = a> the possible steady states are on the intersection 

of the energy ellipsoid and the plane H x H?. w = 0. 

CASE IV.  If i~ f  0 and n = 3, then the centers of the angular momentum 

ellipsoids can be anywhere in w-space.  Let us set W = cos <f>  cos 9, 

W„ = cos <L  sin 9 . W, = sin 9. For fixed T . <L  and 9. there will be 2      , y - i  r > - - 

from two to six steady states of rotation, depending on the value of r . 

If y  and 9 vary independently while V  remains fixed, the critical 

points 

w = -  r C-A. (6.Q.  T )l      (cos I  cos 9 H. + cos <L  sin 0 H_ + sin «4 H_") 
_c       L     ' '      J r -1      r ' -d r  -3' 

will trace out regions on the energy ellipsoid.  In accordance with the 

limits calculated at the end of Section 6, for fixed p  and 9 the two steady 

states of rotation for I r | = oo will be at the ends of the diameter 

of the energy ellipsoid parallel to 

cos r  (cos 9 H + sin 9L) + sin r  H, 

If we let r  and 9 range over all permissible values, we obtain the entire 

surface of the energy ellipsoid. 

Let us conclude by reiterating that Case I includes the topologically 

spherical cavity (genus zero), and Case II the toroidal cavity (genus one). 

It certainly seems reasonable to conjecture that Cases III and IV, respec- 

tively, correspond to cavities, or at least to some cavities, of genera 

5? 



two and three, respectively.  In a cavity of genus N it is possible to 

assign arbitrarily N independent circulations r  . For N fe k  our 
J 

conjecture would Imply that increases in genus do not lead to new types 

of dynamic behavior, but merely present a greater variety of choices of 

parameters ( I~ .) to simulate the behavior of bodies with liquid filled 

cavities of genera less than four. If there were only some mechanism 

for randomly exciting and varying strong circulations in a body with a 

complicated, liquid filled labyrinth, one might speculate that then by 

virtue of the possibility of suddenly inducing degeneracies of the sort 

discussed in Section 7> an^. thereby switching from motion of one type to 

another, the behavior of the liquid-solid system could become highly 

erratic and unstable. 

J 
J. H. GIESE 
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